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Microscopic Studies of Fluids in Pores: 
Computer Simulation and Mean-Field Theory 1 

B. K. Peterson, 2 J. P. R. B. Walton, 2'3 and K. E. Gubbins 2 

The behavior of a simple model of a fluid confined to a single, infinitely long 
cylindrical pore is investigated by means of both a grand canonical Monte 
Carlo computer simulation and a mean-field theory. The theory is used to 
calculate the density profile of the fluid, as well as the grand potential of the 
system. The effect of the (size of the) pore radius as well as the temperature and 
pressure on the phase behavior of the fluid is studied in some detail, and the 
results are compared to those produced by related work in this field. The 
preliminary results from the simulation indicate that, in pores whose radii are a 
few molecular diameters in size, the fluid molecules tend to pack in cylindrically 
concentric shells about the axis of the pore. 
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1. I N T R O D U C T I O N  

The study of the behavior of fluids within pores or capillaries is important, 
from both a practical and a theoretical viewpoint. Practically, it is of 
interest because many important industrial processes (for example, 
adsorption [1], separation [2], gas permeability [3], etc.) involve a fluid 
which is confined to a region that is small on a molecular scale. On the 
other hand, from a theoretical point of view, it can be expected that the 
presence of the fluid-wall forces will cause the properties of the fluid in the 
pore or capillary to be quite different from those of the bulk fluid (in a way 
that is analogous to the difference between the bulk fluid and, for example, 
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a fluid between parallel plates [4] or the fluid within a drop or a bubble 
[5]). In particular, the use of equations derived from classical ther- 
modynamics to predict these properties or to analyze experimental results 
must be viewed with some suspicion when the system size becomes small, 
since thermodynamically speaking, the fluid is then no longer well defined 
[6]. 

The task of the theoretician in this area, and the problem to which this 
paper is addressed, is the detailed investigation of these systems using truly 
microscopically based techniques, with a view to the eventual comparison 
of these results with those which have a purely thermodynamic origin. 

2. M E T H O D  

The theory of fluids (particularly inhomogeneous fluids) has benefited 
in the past from the comparison of its predictions with the quasi- 
experimental results obtained from two complementary techniques, namely, 
computer simulation and the use of simplified model fluids. Before discus- 
sing these two techniques, however, let us briefly consider the system which 
is examined. 

We consider a system of spherical molecules, all of the same species, 
which interact with each other via the potential 

u( r )  = ULj(r) -- uLj(rc); r ~< ro 
(1) 

= 0; r > r c 

where 
ULj(r)  = 4aE ( a / r )  12 - ( a / r )  6 ] 

(2) 
rc = 2.5a 

the Lennard-Jones function, characterized by a length (a, the collision 
diameter) and an energy (5, the well depth); we use combinations of these 
to suitably reduce the properties of the system so as to  make them dimen- 
sionless. The molecules are placed in a cylindrical container of infinite 
height and radius R and are acted upon by an external potential emitting 
from the wall of the container. This potential is calculated by (a) assuming 
that the solid can be modeled as a continuum of density PsouD which is 
infinite in extent, (b) assuming a Lennard-Jones interaction (with values of 
a and e which are different from those for the fluid-fluid interaction) to 
exist between each fluid molecule and each volume element in the solid, 
and (c) integrating this potential over the solid [7]: 

g(r) = fSOLID dr' ULj(lr-- r'{ ) PSOLID (3) 
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The values of the a's and the e's used in the interactions may be 
chosen to produce reasonable representations of different fluids at different 
adsorbates; here, we choose to study fluid argon on solid carbon dioxide. 

We now discuss the two techniques used. Simulation may be described 
as a "brute force" route to the properties of interest. They are calculated by 
using the microscopic equations of statistical mechanics in an assembly of 
molecules and then averaged over a series of configurations generated by 
the computer in the appropriate ensemble. In this work, we use the 
simulation technique known as grand canonical Monte Carlo [8]. Here, 
the temperature, volume, and chemical potential are chosen, and the 
simulation calculates the other properties of the system. This type of 
simulation technique is particularly well suited to the study of phase trans- 
itions and adsorption isotherms [9]. 

In contrast, the development of the model fluid approach starts from 
the following relationship [ 10 ]: 

aEp]  : FEp] + f air V(r) p(r) -/~ f dr p(r) (4) 

Here, /~ is the chemical potential, and p(r) is the singlet density at the 
position r in the inhomogeneous system. Q and F are functionals of p; f2 
has the property that it is minimized by the equilibrium density profile, 
when it is then the grand potential of the system, and F is then the intrinsic 
Helmholtz free energy. By minimizing this equation, we obtain, then, 

= + V ( r ) - ~ - -  0 (5) 
eqm eqm 

This is still only a formal relation, but by constructing a model for F, we 
can solve it for p. The model we choose is [ 11 ] 

1 
F[/3 ] : f dr 1 fh(p(r l ) )  ~- ~ f dr 1 f dr 2 b/a(F12 ) P(r l )p(r2)  (6) 

where the first term is a local approximation to the effect of the repulsive 
forces acting between the molecules; fh(P) is the free-energy density of a 
hard-sphere fluid of density p--here, we use the Percus-Yevick (com- 
pressibility) approximation to this quantity. The second term is due to the 
attractive intermolecular forces which are dealt with using a mean-field 
approximation; Ua is the attractive part of the potential u. We note that this 
model for F is rather crude in that the short-range order of the fluid is 
neglected and so, for example, the profiles obtained from this theory for a 
fluid against a wall will not show the packing effects that are to be found 
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in, for example, the simulation. More sophisticated models for F overcome 
this limitation [12]. Using Eq. (6) in Eq. (5) gives 

/~h(p(ra)) + f dr 2 ua(ra2 ) p(r2) + V(r a ) - # = 0 (7) 

Given a reasonable starting guess for p(r), this equation may be solved for 
the profile, generally via an iterative procedure. The technical details of the 
method of solution will be presented elsewhere. 

This general expression, Eq. (7), simplifies according to the geometry 
of the system being studied. Thus, for the pore, p(r) --, p(s), a function of 
(two-dimensional) radius only, and the integral above reduces to a simpler 
form. 

3. RESULTS AND DISCUSSION 

The results presented come, for the most part, from the mean-field 
theory. This is partly because this is faster to implement than the 
simulation and partly due to the way in which this problem is being 
tackled, i.e., one of the functions of the theory is to identify areas of interest 
in the phase diagram and to suggest the most profitable conditions under 
which to perform simulations. 

The applied parameters in both methods are the temperature, the 
chemical potential, and the volume (or radius) of the pore. It is, however, 
more convenient to present the results from the theory in terms of the tem- 
perature, pressure, and volume, since this affords a more immediate con- 
nection with, for example, the adsorption isotherms measured by 
experimental methods. 

Consider the pore at some subcritical temperature and at some 
pressure at or below that of the saturated bulk fluid. Looking for profiles 
that satisfy Eq. (7), we find that, for a large pore radius, two different 
solutions result from the minimization of ~2--one corresponding to a high, 
liquid-like density at the center of the pore and one corresponding to a 
low, gas-like density there. Both are local minimina in f2; to decide which is 
the absolute minimum, (2 must be calculated explicitly for each, using Eqs. 
(4) and (6). The one with the lower ~ value is the stable solution, while the 
other is metastable. 

At saturation, we find that, for all temperatures so far studied (down 
to kT/e=0.2), the liquid-filled pore is the stable configuration. Upon 
decreasing the pressure to below saturation, the vapor configuration 
becomes more stable than the liquid, provided that the pore radius is large 
enough. However, as R is decreased, ~"~vap remains more or less constant, 
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but f2~iq falls rapidly. The point at which they cross (see Fig. 1 ) is the point 
of transition between the vapor-filled pore and the liquid-filled pore--that  
is, the point at which capillary condensation occurs. There is a metastable 
part to the gas branch of the curve, which ends at a radius which is smaller 
than the transition radius. 

Figure 2 shows the density profiles (that is, the stable solutions) at the 
temperature and pressure of Fig. 1. Increasing the pressure shifts the point 
of transition to larger radius. Figure 3 shows the adsorption isotherms at 
kT/e = 0.9 for a variety of pore radii. Here F/L,  the adsorption per unit 
length of pore, is 

F/L  = 2~ s dsEp(s) - Pb] (8) 

where Pb is the density of the bulk fluid at the same temperature and 
pressure. As the pore size increases, the pressure at which the transition 
from gas to liquid occurs increases, approaching the saturation pressure as 
R ~ o o .  

The results which have so far been obtained for the phase equilibria in 
the pore, according to the mean-field theory, are summarized in Fig. 4. 
These are the coexistence isotherms, plotted as a function of the pressure 
and pore radius. We find that altering the temperature has little effect on 
the radius at which, for a given pressure, the liquid- and the gas-filled pores 
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Fig. 1. Reduced grand potential per unit length of pore as a function of reduced 
pore radius, at kT/e = 0.7 and PIP,at = 0.6, for the liquid-filled (D)  and the vapor- 
filled ( • )  pore, calculated from the mean-field theory. The curves cross at the point 
of transition between the two configurations. 
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Fig. 2. Reduced density profiles at kT/e = 0.7 and e/Psat = 0.6, from the mean-field 

theory. 

coexist, although it seems as if this radius is weakly proportional to the 
temperature. 

This result may be compared to that of  Evans and Tarazona [4] ,  who 
used this theory to study a fluid whose molecules interact via a (nontrun- 
cated) exponential potential placed between two parallel walls which act on 
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Fig. 3. Plot of reduced adsorption vs reduced pressure at k T/e =0.9 and reduced  
pore radii of 3.0 ( [] ), 4.0 ( ~ ), 5.0 ( + ), and 6.0 ( x ). Calculated from the mean- 
field theory. 
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the fluid via an exponential potential having a range equal to that of the 
fluid-fluid interaction. They find that this system has a more complicated 
phase diagram than that shown in Fig. 4, the phase behavior being a strong 
function of the temperature in their system. The difference between the two 
sets of results is, perhaps, not too surprising in view of the fact that the 
behavior of fluids in the neighborhood of a wall has been shown [13] to be 
extremely sensitive to the fine details of the model used. We note in passing 
that, by changing the values of the parameters in the potentials to those 
appropriate to a different fluid at a different adsorbate, it is possible to 
obtain a phase diagram having a structure that is quite different from that 
in Fig. 4. 

One feature of Evans and Tarazona's results which, however, should 
apparantly be independent of the details of the potentials is that their 
coexistence curves terminate on a line of critical points. We have found 
evidence for the presence of a critical point on the isotherm only at the 
higher temperatures so far studied (kT/e = 1.0, 0.9); work is in progress to 
see if this feature can be observed at the lower temperatures. Similarly, we 
are currently engaged in a comparison of the predictions of the theory with 
those of the Kelvin equation (which is purely thermodynamic in its 
origins), with a view to determining the range of its validity in this system. 

Finally, we show in Figs. 5 and 6 two density profiles from the 
simulation. These results are presented in terms of the temperature, 
volume, and (excess) chemical potential (over that of an ideal gas at the 
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Fig. 4. Coexistence isotherms in the pore, calculated from the mean-field theory, 

at reduced temperatures ofO.2 (E2), 0.3 (A), 0.4 (+) ,  0.6 (x ) ,  and 0.9 (�9 
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1.  2 ,  3. S/O" 
Reduced density profiles at kT/e= 1.0, R/a=3.0, and  , u e j e = - 0 . 1 ,  

from the computer simulation. 

same conditions as the bulk phase). Their most striking feature is the 
pronounced structure, indicating that the molecules are packing in cylin- 
drical shells around the center of the pore (this tendency is, perhaps, aided 
by the fact that the pores in Figs. 5 and 6 have radii which are an integral 
number of molecular diameters in size). Although these results are only 
preliminary, the comparison with the profiles generated by the mean-field 
theory is perhaps a good demonstration of the point noted above--that a 
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Fig. 6. As for Fig. 5, but with R/~ = 5.0. 
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realistic incorporation of the effect of short-range correlations would be a 
significant improvement in the theory, especially in its description of the 
behavior of fluids in these pores having radii of only a few molecular 
diameters. This problem is currently under consideration. 
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